Meningeal P2X7 Signaling Mediates Migraine-Related Intracranial Mechanical Hypersensitivity.

Autor: Zhao, Jun, Harrison, Samantha, Levy, Dan
Předmět:
Zdroj: Journal of Neuroscience; 8/16/2023, Vol. 43 Issue 33, p9875-9885, 11p
Abstrakt: Cortical spreading depolarization (CSD) is a key pathophysiological event that underlies visual and sensory auras in migraine. CSD is also thought to drive the headache phase in migraine by promoting the activation and mechanical sensitization of trigeminal primary afferent nociceptive neurons that innervate the cranial meninges. The factors underlying meningeal nociception in the wake of CSD remain poorly understood but potentially involve the parenchymal release of algesic mediators and damage-associated molecular patterns, particularly ATP. Here, we explored the role of ATP-P2X purinergic receptor signaling in mediating CSD-evoked meningeal afferent activation and mechanical sensitization. Male rats were subjected to a single CSD episode. In vivo, extracellular single-unit recording was used to measure meningeal afferent ongoing activity changes. Quantitative mechanical stimuli using a servomotor force-controlled stimulator assessed changes in the afferent's mechanosensitivity. Manipulation of meningeal P2X receptors was achieved via local administration of pharmacological agents. Broadspectrum P2X receptor inhibition, selective blockade of the P2X7 receptor, and its related Pannexin 1 channel suppressed CSD-evoked afferent mechanical sensitization but did not affect the accompanying afferent activation response. Surprisingly, inhibition of the pronociceptive P2X2/3 receptor did not affect the activation or sensitization of meningeal afferents post- CSD. P2X7 signaling underlying afferent mechanosensitization was localized to the meninges and did not affect CSD susceptibility. We propose that meningeal P2X7 and Pannexin 1 signaling, potentially in meningeal macrophages or neutrophils, mediates the mechanical sensitization of meningeal afferents, which contributes to migraine pain by exacerbating the headache during normally innocuous physical activities. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index