Research on Coal and Gangue Recognition Model Based on CAM-Hardswish with EfficientNetV2.

Autor: Li, Na, Xue, Jiameng, Wu, Sibo, Qin, Kunde, Liu, Na
Předmět:
Zdroj: Applied Sciences (2076-3417); Aug2023, Vol. 13 Issue 15, p8887, 12p
Abstrakt: In response to the multiscale shape of coal and gangue in actual production conditions, existing coal separation methods are inefficient in recognizing coal and gangue, causing environmental pollution and other problems. Combining image data preprocessing and deep learning techniques, this paper presents an improved EfficientNetV2 network for coal and gangue recognition. To expand the dataset and prevent network overfitting, a pipeline-based data enhancement method is used on small sample datasets to simulate coal and gangue production conditions under actual working conditions. This method involves modifying the attention mechanism module in the model, employing the CAM attention mechanism module, selecting the Hardswish activation function, and updating the block structure in the network. The parallel pooling layer introduced in the CAM module can minimize information loss and extract rich feature information compared with the single pooling layer of the SE module. The Hardswish activation function is characterized by excellent numerical stability and fast computation speed. It can effectively be deployed to solve complex computation and derivation problems, compensate for the limitations of the ReLu activation function, and improve the efficiency of neural network training. We increased the training speed of the network while maintaining the accuracy of the model by selecting optimized hyperparameters for the network structure. Finally, we applied the improved model to the problem of coal and gangue recognition. The experimental results showed that the improved EfficientNetV2 coal and gangue recognition method is easy to train, has fast convergence and training speeds, and thus achieves high recognition accuracy under insufficient dataset conditions. The accuracy of coal and gangue recognition increased by 3.98% compared with the original model, reaching 98.24%. Moreover, the training speed improved, and the inference time of the improved model decreased by 6.6 ms. The effectiveness of our proposed model improvements is confirmed by these observations. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index