Performance scaling with an applied magnetic field in indirect-drive inertial confinement fusion implosions.

Autor: Sio, H., Moody, J. D., Pollock, B. B., Strozzi, D. J., Ho, D. D.-M., Walsh, C. A., Kemp, G. E., Lahmann, B., Kucheyev, S. O., Kozioziemski, B., Carroll, E. G., Kroll, J., Yanagisawa, D. K., Angus, J., Bachmann, B., Baker, A. A., Bayu Aji, L. B., Bhandarkar, S. D., Bude, J. D., Divol, L.
Předmět:
Zdroj: Physics of Plasmas; Jul2023, Vol. 30 Issue 7, p1-10, 10p
Abstrakt: Magnetizing a cryogenic deuterium–tritium (DT)-layered inertial confinement fusion (ICF) implosion can improve performance by reducing thermal conduction and improving DT-alpha confinement in the hot spot. A room-temperature, magnetized indirect-drive ICF platform at the National Ignition Facility has been developed, using a high-Z, high-resistivity AuTa4 alloy as the hohlraum wall material. Experiments show a 2.5× increase in deuterium–deuterium (DD) neutron yield and a 0.8-keV increase in hot-spot temperature with the application of a 12-T B-field. For an initial 26-T B-field, we observed a 2.9× yield increase and a 1.1-keV temperature increase, with the inferred burn-averaged B-field in the compressed hot spot estimated to be 7.1 ± 1.8 kT using measured primary DD-n and secondary DT-n neutron yields. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index