Abstrakt: |
Pesticides are widely used around the world to increase crop production. They also have negative impacts on animals, humans, and the ecosystem. This is the first report evaluating a novel pomegranate-extract-loaded clove-oil-based nanoemulsion (PELCN) and its potential for reducing oxidative stress and DNA damage, as well as its hepatoprotective effects against imidacloprid (IM) and chlorpyrifos (CPF) toxicity in male rats. The benchmark dose (BMD) approach was also used to study the dose–response toxicity of IM and CPF. IM and CPF were administered daily for 28 days at doses of 14, 28, and 54 mg/kg body weight (bw) of IM and 1, 2, and 4 mg/kg bw of CPF via drinking water. The PELCN was administered orally at a dose of 50 mg/kg bw/day of pomegranate extract, 500 mg/kg bw of the clove oil nanoemulsion, and IM or CPF at high doses in the drinking water. In male rats, IM and CPF caused a reduction in body weight gain and hepatotoxic effects as evidenced by increases in the liver enzymes AST, ALT, and ALP. They caused oxidative damage in the liver of male rats as indicated by the decreased liver activity of the GST, GPX, SOD, and CAT enzymes and decreased serum TAC. IM and CPF produced a significant dose-dependent increase in DNA damage in hepatocyte cells, resulting in moderate to severe liver damage with cells that are more inflammatory and have enlarged sinusoids and compacted nuclei. IM had a higher BMD than CPF for both body and liver weight, suggesting that CPF was more dose-dependently toxic than IM. Albumin was a highly sensitive liver biomarker for IM, while total protein was a biomarker for the CPF-treated rats. GPx was an extremely sensitive biomarker of oxidative stress in the IM treatment, while CAT and GPx were highly sensitive parameters in the CPF-treated rats. Therefore, at comparable doses, CPF has a higher potential to cause liver damage and oxidative stress than IM. The hepatotoxicity of IM and CPF can be mitigated by administering a nanoemulsion containing clove oil and pomegranate extract. The nanoemulsion acts as a protector against the oxidative stress caused by these insecticides, especially at high doses. The nanoemulsion based on clove oil increases the bioavailability and stability of the pomegranate extract, which has antioxidant properties. [ABSTRACT FROM AUTHOR] |