Autor: |
Dorsaz, J., Carlin, J.-F., Gradecak, S., Ilegems, M. |
Předmět: |
|
Zdroj: |
Journal of Applied Physics; 4/15/2005, Vol. 97 Issue 8, p084505, 6p, 1 Black and White Photograph, 2 Diagrams, 6 Graphs |
Abstrakt: |
We report on the progress in the growth of highly reflective AlInN–GaN distributed Bragg reflectors deposited by metalorganic vapor phase epitaxy. Al1-xInxN layers with an In content around x∼0.17 are lattice-matched to GaN, thus avoiding strain-related issues in the mirror while keeping a high refractive index contrast of about 7%. Consequently, a reflectivity value as high as 99.4% at 450 nm was achieved with a 40-pair crack-free distributed Bragg reflector. We measured an average absorption coefficient α [cm-1] in the AlInN–GaN Bragg reflectors of 43±14 cm-1 at 450 nm and 75±19 cm-1 at 400 nm. Application to blue optoelectronics is demonstrated through the growth of an InGaN–GaN microcavity light emitting diode including a 12-pair Al0.82In0.18N–GaN distributed Bragg reflector as bottom mirror. The device exhibits clear microcavity effects, improved directionality in the radiation pattern and an optical output power of 1.7 mW together with a 2.6% external quantum efficiency at 20 mA. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|