Abstrakt: |
Purpose. The work aims to study the effect of cellulose on the caking properties of various types of coking coal used in coking blends. The change in caking abilities has been analyzed to achieve the aim using standard techniques. At the same time, the effect of biomass additives on the plastic properties of coal has been analyzed comprehensively; the optimal amount of additive for practical purposes has been determined. Methods. Multiple coal characteristics in the plastic stage have been studied using a dilatometric method, the enhanced swelling pressure method, the plastometric method, and the Roga index test. The first three methods make it possible to characterize the caking properties of coal; and the Roga index test characterizes its coking ability. Findings. It has been identified that the optimal amount of biomass additive to study the effect on the properties of coal in the plastic state is more than 5 wt. %. In the paper, experimental dependences of the 5 wt. % cellulose addition influence on the caking properties of four coal grades have been obtained. The results showed a slight decrease in caking properties in terms of swelling, swelling pressure, thickness of the plastic layer, and caking ability. Simultaneously, the most sensitive methods for assessing the effect of cellulose addition on the coal plastic properties are the dilatometric method as well as the enhanced method for the swelling pressure determination. Originality. A comprehensive study of the effect of pure cellulose as a component of lignocellulose biomass on the properties of different coal grades in the plastic state (i.e. caking prperteis) has been carried out. A slight change in the coal properties in the plastic state with adding 5 wt. % cellulose, decreasing caking properties, has been shown. An important, not previously reported, conclusion is that the cellulose additive does not have any noticeable effect on the physical properties of the coal charge owing to its loose structure. Practical implications. A slight change in the caking properties of coal has been established with the addition of 5 wt. % which is of practical importance for the preparation of coal blends, and the coke production in the cases of using additives of lignocellulosic biomass without losing its quality. Additionally, renewable additive use while obtaining fuels and reducing agents is an approach to mitigate the negative environmental impact. [ABSTRACT FROM AUTHOR] |