Abstrakt: |
Introduction: The increase in greenhouse gas emissions and climate change in recent years has led to frequent droughts and increased vulnerability in agricultural production. In Hamedan province, heat and dryness resulting from climate change and greenhouse gas emissions have increased the evaporation of water and the water requirements of crops, leading to instability and vulnerability in agricultural production. The aim of this study is to investigate the impact of variables such as carbon dioxide emissions, temperature, average precipitation, water consumption, technological changes, and other important variables on wheat production as one of the main strategic products in Hamedan province. This will help estimate and analyze the relationship between the variables affecting and affected by climate change and the level of wheat production. Materials and Methods: To this end, an autoregressive distributed lag (ARDL) econometric model was developed and estimated using time series data from 1977 to 2017 to examine the short- and long-term effects of climatic and technical variables on changes in wheat production in Hamedan province. Findings: The results showed that although increasing carbon dioxide emissions reduce wheat production in Hamedan province, this reduction was not significant during the period under study. The estimation results also indicated that the climate variable of changes in precipitation had a significant effect on wheat production in Hamedan province, but changes in temperature and technological variables did not have a significant effect on wheat production. Conclusion: It can be inferred from these results that the negative effect of greenhouse gas emissions on wheat production in Hamedan province has begun, but this negative effect is not yet significant. The error correction model results also showed that any negative shock to wheat production in the short term is managed through adjusting the level of cultivation, fertilizer, and, most importantly, agricultural credits, and that changes in water and agricultural credits exacerbate negative shocks and reduce the responsiveness of wheat production to these shocks. [ABSTRACT FROM AUTHOR] |