Abstrakt: |
Bacillus species have gained much attention based on their phenotypic characteristics and their genetic architecture as biological control agents and plant growth-promotor with bioremediation potential. In this study, we analyzed the whole genome of a novel strain, Bacillus glycinifermentans MGMM1, isolated from the rhizosphere of a weed plant (Senna occidentalis) and assayed its phenotypic characteristics, as well as antifungal and biocontrol ability. The whole genome analysis of MGMM1 identified 4259 putative coding sequences, with an encoding density of 95.75% attributed to biological functions, including genes involved in stimulating plant growth, such as acetolactate synthase, alsS, and genes involved in the resistance to heavy metal antimony (arsB and arsC). AntiSMASH revealed the presence of biosynthetic gene clusters plipastatin, fengycin, laterocidine, geobacillin II, lichenysin, butirosin A and schizokinen. Tests in vitro confirmed that MGMM1 exhibited antifungal activity against Fusarium oxysporum f.sp. radicis-lycopersici (Forl) ZUM2407, Alternaria alternata, F. graminearum and F. spp. and produce protease, lipase amylase and cellulase. Bacillus glycinifermentans MGMM1 demonstrated proteolytic (4.82 ± 1.04 U/mL), amylolytic (0.84 ± 0.05 U/mL) and cellulosic (0.35 ± 0.02 U/mL) enzymatic activities, as well as indole-3-acetic acid production (48.96 ± 1.43 μg/mL). Moreover, the probiotic strain MGMM1 demonstrated a high biocontrol potential of inhibiting (up to 51.45 ± 8.08%) the development of tomato disease caused by Forl ZUM2407. These results suggest that B. glycinifermentans MGMM1 has significant potential as a biocontrol, plant growth-promoting agent in agriculture. [ABSTRACT FROM AUTHOR] |