Autor: |
Hazra, Suchandra, Morampudi, Prithvi, Prindle, John C., Fortela, Dhan Lord B., Hernandez, Rafael, Zappi, Mark E., Buchireddy, Prashanth |
Předmět: |
|
Zdroj: |
Clean Technologies; Jun2023, Vol. 5 Issue 2, p675-695, 21p |
Abstrakt: |
Biomass is an excellent sustainable carbon neutral energy source, however its use as a coal/petroleum coke substitute in thermal applications poses several challenges. Several inherent properties of biomass including higher heating value (HHV), bulk density, and its hydrophilic and fibrous nature, all contribute to challenges for it to be used as a solid fuel. Torrefaction or mild pyrolysis is a well-accepted thermal pretreatment technology that solves most of the above-mentioned challenges and results in a product with superior coal-like properties. Torrefaction involves the heating of biomass to moderate temperatures typically between 200 °C and 300 °C in a non-oxidizing atmosphere. This study focused on evaluating the influence of torrefaction operating temperature (204–304 °C) and residence time (10–40 min) on properties of pine. Tests were performed on a continuous 0.3 ton/day indirectly heated rotary reactor. The influence of torrefaction operational conditions on pine was evaluated in terms of the composition of torrefied solids, mass yield, energy yield, and HHV using a simulated model developed in Aspen Plus™ software. A kinetic model was established based on the experimental data generated. An increase in torrefaction severity (increasing temperature and residence time) resulted in an increase in carbon content, accompanied with a decrease in oxygen and hydrogen. Results from the simulated model suggest that the solid and energy yields decreased with an increase in temperature and residence time. Solid yield varied from 80% at 204 °C to 68% at 304 °C, and energy yield varied from 99% at 204 °C to 70% at 304 °C, respectively. On the other hand, HHV improved from 22.8 to 25.1 MJ/kg with an increase in temperature at 20 min residence time. Over the range of 10 to 40 min residence time at 260 °C, solid and energy yields varied from 77% to 59% and 79% to 63%, respectively; however the HHV increased by only 3%. Solid yield, energy yield, and HHV simulated data were within the 5% error margin when compared to the experimental data. Validation of the simulation parameters was achieved by the conformance of the experimental and simulation data obtained under the same testing conditions. These simulated parameters can be utilized to study other operating conditions fundamental for the commercialization of these processes. Desirable torrefaction temperature to achieve the highest solid fuel yield can be determined using the energy yield and mass loss data. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|