MPC-ECMS Energy Management of Extended-Range Vehicles Based on LSTM Multi-Signal Speed Prediction.

Autor: Lu, Laiwei, Zhao, Hong, Liu, Xiaotong, Sun, Chuanlong, Zhang, Xinyang, Yang, Haixu
Předmět:
Zdroj: Electronics (2079-9292); Jun2023, Vol. 12 Issue 12, p2642, 23p
Abstrakt: Rule-based energy management strategies not only make little use of the efficient area of engines and generators but also need to perform better planning in the time domain. This paper proposed a multi-signal vehicle speed prediction model based on the long short-term memory (LSTM) network, improving the accuracy of vehicle speed prediction by considering multiple signals. First, various signals were collected by simulating the vehicle model, and a Pearson correlation analysis was performed on the collected multiple signals in order to improve the model's prediction accurate, and the appropriate signal was selected as the input to the prediction model. The experimental results indicate that the prediction method greatly improves the predictive effect compared with the support vector machine (SVM) vehicle speed prediction method. Secondly, the method was combined with the model predictive control-equivalent consumption strategy (MPC-ECMS) to form a control strategy suitable for power maintenance conditions enabling the equivalent factor to be adjusted adaptively in real-time and the target state of charge (SoC) value to be set. Pontryagin minimum principle (PMP) enables the battery to calculate the range extender output power at each moment. PMP, as the core algorithm of ECMS, is a common real-time optimal control algorithm. Then, taking into account the engine's operating characteristics, the calculated range extender power was filtered to make the engine run smoothly. Finally, hardware-in-the-loop simulation (HIL) was used to verify the model. The simulation results demonstrate that this method uses less fuel than the equivalent fuel consumption minimum strategy (ECMS) by 1.32%, 9.47% when compared to the power-following control strategy, 15.66% when compared to the SVM-MPC-ECMS, and only 3.58% different from the fuel consumption of the dynamic programming (DP) control algorithm. This shows that this energy management approach can significantly improve the overall vehicle fuel economy. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index