Autor: |
Arbunich, J., Faupin, J., Pusateri, F., Sigal, I. M. |
Předmět: |
|
Zdroj: |
Communications in Partial Differential Equations; 2023, Vol. 48 Issue 4, p542-575, 34p |
Abstrakt: |
We prove maximal speed estimates for nonlinear quantum propagation in the context of the Hartree equation. More precisely, under some regularity and integrability assumptions on the pair (convolution) potential, we construct a set of energy and space localized initial conditions such that, up to time-decaying tails, solutions starting in this set stay within the light cone of the corresponding initial datum. We quantify precisely the light cone speed, and hence the speed of nonlinear propagation, in terms of the momentum of the initial state. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|