Autor: |
Sebastian, Jomon, Raghav, Darpan, Rathinasamy, Krishnan |
Zdroj: |
Molecular Diversity; Jun2023, Vol. 27 Issue 3, p1203-1221, 19p |
Abstrakt: |
We discovered tolvaptan as a new Eg5 inhibitor using molecular dynamics simulation-based virtual screening. The Eg5-monastrol, Eg5-ispinesib, and Eg5-STLC complexes with "closed" L5 conformation obtained in MD simulation were used to generate a combined pharmacophore model, and this model was used during the process of virtual screening. Further, the MD simulation for 1 µs showed that the binding of tolvaptan to Eg5 was stable due to the closure of the α2/L5/α3 pocket. Tolvaptan belongs to the class of drugs called vaptans which are non-peptide vasopressin receptor antagonists. Since our virtual search for mitotic inhibitors identified tolvaptan as a potential candidate, we were interested in unraveling its antimitotic mechanism. Tolvaptan bound to purified Eg5-437H with a dissociation constant of 27 ± 3.8 µM. Tolvaptan inhibited the growth of HeLa cells through the mitotic block, and around 70% of these mitotic cells exhibited a characteristic monopolar spindle. Tolvaptan bound to goat brain tubulin with a dissociation constant of 103 ± 13 µM. The binding location of tolvaptan on tubulin overlapped with that of colchicine, according to molecular docking analysis. The combination of tolvaptan with STLC augmented mitotic bock with monopolar cells, whereas its combination with vinblastine increased mitotic block with bipolar cells. Since tolvaptan is found to have a significant cytotoxic effect on HeLa cells, it can be developed as a prospective anticancer agent either alone or in combination with other antimitotic drugs. Tolvaptan was identified as an inhibitor of Eg5 in a MD simulation-based virtual screening using a combined pharmacophore model. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|