Abstrakt: |
In the past years, special attention has been drawn to the explosion and its effect on various structures, especially thin-walled structures. One of the most effective factors for changing the behavior of such structures is thermal and shock loads caused by explosions. In the meantime, considering the geometric nature of the shells, which have a wide surface and thinness, as well as their wide application in various industries such as missile industries, nuclear industries, shipbuilding and silo construction, it is necessary to investigate the effect of these loads on the nonlinear dynamic behavior of the shells. However, knowing the large deformation of such structures under these loads, practical and cost-effective solutions such as strengthening the shells using hardeners are recommended. On the other hand, implementation problems and the possibility of creating an opening in the shells lead to a change in their behavior. In this thesis, using the ABAQUS finite element software, the elastoplastic response of single-curvature steel shells with and without opening and stiffener against blast loads is investigated. For this purpose, the effect of the supporting conditions, the thickness of the single curved shell, the mass of the TNT material, the distance from the place of explosion to the centre of the shell, the curvature of the shell, and the effect of opening and stiffener have been investigated. The results indicated better performance of the shell with the bearing support condition compared to other support conditions. Increasing the curvature of the shell initially led to an increase in displacement and then a decreasing trend. Results of the research indicate that the creation of circular and square openings has reduced the stiffness of the shell, followed by an increase in displacement, and the increase in displacement for square openings is more than circular openings. [ABSTRACT FROM AUTHOR] |