Autor: |
Hasan, S. M. Naimul, Lou, Jennifer W., Keszei, Alexander F. A., Dai, David L., Mazhab-Jafari, Mohammad T. |
Předmět: |
|
Zdroj: |
Nature Communications; 6/12/2023, Vol. 14 Issue 1, p1-10, 10p |
Abstrakt: |
Fatty acid synthase (FASN) catalyzes the de novo synthesis of palmitate, a 16-carbon chain fatty acid that is the primary precursor of lipid metabolism and an important intracellular signaling molecule. FASN is an attractive drug target in diabetes, cancer, fatty liver diseases, and viral infections. Here, we develop an engineered full-length human FASN (hFASN) that enables isolation of the condensing and modifying regions of the protein post-translation. The engineered protein enables electron cryo-microscopy (cryoEM) structure determination of the core modifying region of hFASN to 2.7 Å resolution. Examination of the dehydratase dimer within this region reveals that unlike its close homolog, porcine FASN, the catalytic cavity is close-ended and is accessible only through one opening in the vicinity of the active site. The core modifying region exhibits two major global conformational variabilities that describe long-range bending and twisting motions of the complex in solution. Finally, we solved the structure of this region bound to an anti-cancer drug, Denifanstat (i.e., TVB-2640), demonstrating the utility of our approach as a platform for structure guided design of future hFASN small molecule inhibitors. Here, the authors develop a protein engineering method that enables high-resolution structural biology study of human fatty acid synthase. Using this technique, they uncover unique structural features of the enzyme and the mechanism of its inhibition by an anticancer drug Denifanstat. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|