Abstrakt: |
The graphene oxide (GO) deposited TiO2 nanotube (GO/TiO2) electrode on a titania plate was prepared using a simple anodization method. The morphological and structural properties of TiO2 and GO/TiO2 electrodes have been studied using field emission scanning electron microscopy energy dispersive spectroscopy (FESEM-EDS), X-ray diffraction (XRD), UV–vis diffuse reflectance spectroscopy (UV–vis DRS), Raman spectroscopy, Fourier transform infrared spectra (FT-IR), and X-ray photoelectron spectroscopy (XPS). FESEM-EDS analysis confirmed that the 13.56% wt of GO nanoparticles was formed over the TiO2 substrate, with the thickness of the wall to be ∼300 nm. The crystallite size of GO/TiO2, i.e., 19.53 nm, was confirmed by XRD analysis. Analysis of the UV-DRS spectrum showed the bandgap of the synthesized GO/TIO2 nanotube electrode to be 3.052 eV. Box-Behnken design (BBD) under response surface methodology (RSM) was used to design the experiments. The effect of operating input parameters like pH, current (i), and degradation time (t) on % COD degradation (X1) and energy consumed (X2) were also examined. At optimum process parameters, the value of X1 and X2 were 57.61% and 15.00 kWh/m3, respectively. Possible intermediates were identified based on the GC–MS data analysis. Scavenger tests showed that •OH radical plays a major role in electroplating effluents degradation. Based on the results, the EO process using GO/TiO2 electrodes could be considered a promising technique for electroplating effluent degradation due to high degradation efficiency. [ABSTRACT FROM AUTHOR] |