Autor: |
Prasanna Venkatesh, N., Pradeep Kumar, R., Chakravarthy Neelapu, Bala, Pal, Kunal, Sivaraman, J. |
Zdroj: |
Physical & Engineering Sciences in Medicine; Jun2023, Vol. 46 Issue 2, p925-944, 20p |
Abstrakt: |
Examining P-wave morphological changes in Electrocardiogram (ECG) is essential for characterizing atrial arrhythmias. However, standard 12-lead ECGsuffer from diagnostic redundancy due to low signal-to-noise ratio of P-waves. To address this issue, various optimal leads have been proposed for improved atrial activity recording, but the right selection among these leads is crucial for enhancing diagnostic efficacy. This study proposes an automated lead selection technique using the CatBoost machine learning (ML) model to improve the detection of P-wave changes among optimal bipolar leads under different heart rates. ECGs were obtained from healthy participants with a mean age of 25 ± 3.81 years (34% women), including 114 in sinus rhythm (SR) and 38 in sinus tachycardia (ST). The recordings were made using a newly designed atrial lead system (ALS), standard limb lead (SLL), modified limb lead (MLL), modified Lewis lead (LLM) and P-lead. P-wave features and Atrioventricular (AV) ratio were extracted for statistical analysis and ML classification. The optimum ML model was chosen to identify the best-performing optimal lead, which was selected based on the SLL metrics among different ML classifiers. CatBoost was found to outperform the other ML models in SLL-II with the highest accuracy and sensitivity of 0.82 and 0.90, respectively. The CatBoost model, amid other optimal leads, gave the best results for AL-I and AL-II (0.86 and 0.83 in accuracy and 0.91 and 0.93 in sensitivity). The developed CatBoost model selected AL-I and AL-II as the top two best-performing optimal leads for the enhanced acquisition of P-wave changes, which may be useful for diagnosing atrial arrhythmias. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|