Abstrakt: |
Background: Most animals, including humans and insects, consume foods based on their senses. Feeding is mostly regulated by taste and smell. Recent insect studies shed insight into the cross-talk between taste and smell, sweetness and temperature, sweetness and texture, and other sensory modality pairings. Five canonical tastes include sweet, umami, bitter, salty, and sour. Furthermore, other receptors that mediate the detection of noncanonical sensory attributes encoded by taste stimuli, such as Ca2+, Zn2+, Cu2+, lipid, and carbonation, have been characterized. Deorphanizing receptors and interactions among different modalities are expanding the taste field. Methods: Our study explores the taste system of Drosophila melanogaster and perception processing in insects to broaden the neuroscience of taste. Attractive and aversive taste cues and their chemoreceptors are categorized as tables. In addition, we summarize the recent progress in animal behavior as affected by the integration of multisensory information in relation to different gustatory receptor neuronal activations, olfaction, texture, and temperature. We mainly focus on peripheral responses and insect decision-making. Conclusion: Drosophila is an excellent model animal to study the cellular and molecular mechanism of the taste system. Despite the divergence in the receptors to detect chemicals, taste research in the fruit fly can offer new insights into the many different taste sensors of animals and how to test the interaction among different sensory modalities. [ABSTRACT FROM AUTHOR] |