Interplay between Plant Functional Traits and Soil Carbon Sequestration under Ambient and Elevated CO 2 Levels.

Autor: Bhattacharyya, Siddhartha Shankar, Mondaca, Pedro, Shushupti, Oloka, Ashfaq, Sharjeel
Zdroj: Sustainability (2071-1050); May2023, Vol. 15 Issue 9, p7584, 20p
Abstrakt: Unique plant functional traits (morpho-physio-anatomical) may respond to novel environmental conditions to counterbalance elevated carbon dioxide (eCO2) concentrations. Utilizing CO2, plants produce photoassimilates (carbohydrates). A mechanistic understanding of partitioning and translocation of carbon/photoassimilates into different plant parts and soils under ambient and eCO2 is required. In this study, we examine and present the intrinsic relationship between plant functional traits and eCO2 and seek answers to (i) how do plant functional traits (morpho-physio-anatomical features) affect C storage and partitioning under ambient and eCO2 in different plant parts? (ii) How do plant functional traits influence C transfer to the soil and rhizosphere services? Our study suggests that morpho-physio-anatomical features are interlinked, and under eCO2, plant functional traits influence the quantity of C accumulation inside the plant biomass, its potential translocation to different plant parts, and to the soil. The availability of additional photoassimilates aids in increasing the above- and belowground growth of plants. Moreover, plants may retain a predisposition to build thick leaves due to reduced specific leaf area, thicker palisade tissue, and higher palisade/sponge tissue thickness. eCO2 and soil-available N can alter root anatomy, the release of metabolites, and root respiration, impacting potential carbon transfer to the soil. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index