Autor: |
Reichard, J. F., Phelps, S. E., Lehnhardt, K. R., Young, M., Easter, B. D. |
Předmět: |
|
Zdroj: |
NPJ Microgravity; 5/5/2023, Vol. 9 Issue 1, p1-12, 12p |
Abstrakt: |
Pharmaceuticals selected for exploration space missions must remain stable and effective throughout mission timeframes. Although there have been six spaceflight drug stability studies, there has not been a comprehensive analytical analysis of these data. We sought to use these studies to quantify the rate of spaceflight drug degradation and the time-dependent probability of drug failure resulting from the loss of active pharmaceutical ingredient (API). Additionally, existing spaceflight drug stability studies were reviewed to identify research gaps to be addressed prior to exploration missions. Data were extracted from the six spaceflight studies to quantify API loss for 36 drug products with long-duration exposure to spaceflight. Medications stored for up to 2.4 years in low Earth orbit (LEO) exhibit a small increase in the rate of API loss with a corresponding increase in risk of product failure. Overall, the potency for all spaceflight-exposed medications remains within 10% of terrestrial lot-matched control with a ~1.5 increase in degradation rate. All existing studies of spaceflight drug stability have focused primarily on repackaged solid oral medications, which is important because non-protective repackaging is a well-established factor contributing to loss of drug potency. The factor most detrimental to drug stability appears to be nonprotective drug repackaging, based on premature failure of drug products in the terrestrial control group. The result of this study supports a critical need to evaluate the effects of current repackaging processes on drug shelf life, and to develop and validate suitable protective repackaging strategies that help assure the stability of medications throughout the full duration of exploration space missions. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|