An Edge Intelligent Method for Bearing Fault Diagnosis Based on a Parameter Transplantation Convolutional Neural Network.

Autor: Ding, Xiang, Wang, Hang, Cao, Zheng, Liu, Xianzeng, Liu, Yongbin, Huang, Zhifu
Předmět:
Zdroj: Electronics (2079-9292); Apr2023, Vol. 12 Issue 8, p1816, 23p
Abstrakt: A bearing is a key component in rotating machinery. The prompt monitoring of a bearings' condition is critical for the reduction of mechanical accidents. With the rapid development of artificial intelligence technology in recent years, machine learning-based intelligent fault diagnosis (IFD) methods have achieved remarkable success in the field of bearing condition monitoring. However, most algorithms are developed based on computer platforms that focus on analyzing offline, rather than real-time, signals. In this paper, an edge intelligence diagnosis method called S-AlexNet, which is based on a parameter transplantation convolutional neural network (CNN), is proposed. The method deploys the lightweight IFD method in a low-cost embedded system to monitor the bearing status in real time. Firstly, a lightweight IFD algorithm model is designed for embedded systems. The model is trained on a PC to obtain optimal parameters, such as the model's weights and bias. Finally, the optimal parameters are transplanted into the embedded system model to identify the bearing status on the edge side. Two datasets were used to validate the performance of the proposed method. The validation using the CWRU dataset shows that the proposed method achieves an average prediction accuracy of 94.4% on the test set. The validation using self-built data shows that the proposed method can identify bearing operating status in embedded systems with an average prediction accuracy of 99.81%. The results indicate that the proposed method has the advantages of high recognition accuracy, low model complexity, low cost, and high portability, which allow for the simple and effective implementation of the edge IFD of bearings in embedded systems. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index