Autor: |
Kırlı, Emre |
Předmět: |
|
Zdroj: |
Applied Mathematics for Modern Challenges; 2023, Vol. 8 Issue 5, p1-22, 22p |
Abstrakt: |
The present study is concerned with the construction of a new high-order technique to establish approximate solutions of the Telegraph equation (TE). In this technique, a novel optimal B-spline collocation method based on quintic B-spline (QBS) basis functions is constructed to discretize the spatial domain and fourth-order implicit method is derived for time integration. Test problems are considered to verify the theoretical results and to demonstrate the applicability of the suggested technique. The error norm L ∞ and the rate of spatial and temporal convergence are computed and compared with those of techniques available in the literature. The obtained results show the improvement and efficiency of the proposed scheme over the existing ones. Also, it is obviously observed that the experimental rate of convergence is almost compatible with the theoretical rate of convergence. The present study is concerned with the construction of a new high-order technique to establish approximate solutions of the Telegraph equation (TE). In this technique, a novel optimal B-spline collocation method based on quintic B-spline (QBS) basis functions is constructed to discretize the spatial domain and fourth-order implicit method is derived for time integration. Test problems are considered to verify the theoretical results and to demonstrate the applicability of the suggested technique. The error norm and the rate of spatial and temporal convergence are computed and compared with those of techniques available in the literature. The obtained results show the improvement and efficiency of the proposed scheme over the existing ones. Also, it is obviously observed that the experimental rate of convergence is almost compatible with the theoretical rate of convergence. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|