Autor: |
Leibetseder, Felix, Bičvić, Julia, Bretterbauer, Klaus |
Zdroj: |
Chemical Monthly / Monatshefte für Chemie; May2023, Vol. 154 Issue 5, p497-502, 6p |
Abstrakt: |
Common linear polymers are known to undergo phase changes at the glass-transition temperature (Tg) and the melting point (Tm). In recent years, it has also been shown that molecules with long aliphatic side chains can give rise to a backbone-independent melting phenomenon, known as nanophase separation. This effect describes the self-assembly — independent of the polymer backbone — of alkyl side chains into semi-crystalline nanostructures. This work presents optimized, gram scale synthesis routes for dodecyl and octadecyl acrylamide and their respective homopolymers. Differential scanning calorimetry (DSC) experiments detected a broad endothermal signal for poly(n-dodecyl acrylamide) at − 29 °C and a narrower, more intense signal for poly(n-octadecyl acrylamide) at 34 °C. These signals indicate the nanophase separation TM of the alkyl side chains. We undertook the first temperature-controlled infrared spectroscopy investigations of these materials revealing a clear hypsochromic shift of the C–H stretching signals above TM and the amide I signal shifts that occurred only above and below Tg. These results provide further evidence, that the side chains act independently of the polymer backbone and show that infrared spectroscopy is a powerful tool for monitoring conformational changes in polymer side chains. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|