Autor: |
Qian, Budong, Smith, Ward, Jing, Qi, Kim, Yong Min, Jégo, Guillaume, Grant, Brian, Duguid, Scott, Hester, Ken, Nelson, Alison |
Předmět: |
|
Zdroj: |
Canadian Journal of Plant Science; Apr2023, Vol. 103 Issue 2, p161-174, 14p |
Abstrakt: |
The soybean industry in Canada aimed to extensively expand soybean production to benefit from new early-maturing varieties and the warming climate. However, setbacks in the soybean industry since 2017 demonstrated the impacts of climate risk and global market uncertainty. Therefore, a better understanding of future climate conditions that will impact soybean growth in Canada is needed for decision-making in the sector, such as prioritizing regions for expansion and developing climate change adaptation strategies through either agronomic management practices or breeding new cultivars. Based on climate projections from a set of global climate models, we analyzed climate conditions for growing soybeans, including growing season start, crop heat units, precipitation, precipitation deficits and climate extremes, in the near-term (2030s), the mid-term (2050s) and the distant future (2070s). We found that a future warmer climate with an increase of 1.6, 2.8 and 4.1 °C in the growing season (May–September) mean temperature averaged over Canada's land area in the near-term, mid-term and distant future under SSP3-7.0 would favour the expansion of soybean production further north and west. However, an increase of approximately 200 mm in precipitation deficits on the semiarid Canadian Prairies in the mid-term would constrain soybean production unless irrigation could be introduced. Heat- and drought-tolerant cultivars should be developed to adapt soybean production to a changing climate, in addition to the adoption of late-maturing cultivars that would benefit from the lengthened growing season and increased crop heat units. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|