Cooperative Ternary Assemblies Involving Anion–π/π–π/Anion–π Assemblies and Unconventional Cl⋯Cl Interactions in Cu(II) Coordination Compounds: Experimental and Theoretical Studies.

Autor: Sarma, Pinku, Gomila, Rosa M., Frontera, Antonio, Barcelo-Oliver, Miquel, Bhattacharyya, Manjit K.
Předmět:
Zdroj: Crystals (2073-4352); Mar2023, Vol. 13 Issue 3, p517, 18p
Abstrakt: Two coordination compounds of Cu(II), namely, [Cu (phen)2Cl](NO3)·H2O (compound 1) and [Cu2(µ-Cl2)Cl2(Hdmpz)4] (compound 2), where phen = 1,10-phenanthroline and Hdmpz = 3,5-dimethylpyrazole, were synthesized at room temperature and characterized using elemental analysis, TGA, spectroscopic techniques (FT-IR and electronic) and single-crystal X-ray diffraction studies. The cooperative anion–π/π–π/anion–π assemblies involving the coordinated phen, along with the uncoordinated nitrate moieties, played pivotal roles in the stabilization of the crystal structure of compound 1. Unconventional type I Cl⋯Cl interactions involving the coordinated Cl atoms provided reinforcement to the crystal structure of compound 2. We theoretically explored the supramolecular assemblies observed in the crystal structures of compounds 1 and 2 using DFT calculations, MEP surface analysis and combined NCI plot/QTAIM computational tools. Theoretical analysis revealed that the antiparallel π-stacking interactions in compound 1 and the N–H···Cl H-bonds in compound 2 were the strong structure-guiding non-covalent synthons which stabilized the compounds. In the anion–π/π–π/anion–π assembly observed in compound 1, the anion–π interaction reinforced the π-stacking by reducing the electrostatic repulsion between the metal-coordinated electron-deficient phen rings. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index