Structural Performance of Ferrocement Beams Incorporating Longitudinal Hole Filled with Lightweight Concrete.

Autor: Shaheen, Yousry B., Eltaly, Boshra A., Yousef, Shaimaa G., Fayed, Sabry
Předmět:
Zdroj: International Journal of Concrete Structures & Materials; 3/28/2023, Vol. 17 Issue 1, p1-24, 24p
Abstrakt: In this study, 10 ferroconcrete concrete (FC) beams with lightweight cores reinforced with welded steel mesh as a shear reinforcement were evaluated under three-point bending tests along with two conventionally normal-weight concrete (NWC) beams. Expanded polystyrene and lightweight aerated autoclaved brick wastes were used to create lightweight core concrete. The main factors include the type of lightweight concrete used for the core, beam concrete type, the form and number of holes, the existing steel mesh fabric, the hollow, and the hole placement. This study was done on the tested beams' ductility index, failure modes, first cracking loads and associated deflections, and ultimate loads besides corresponding deflections. Experimental results showed that the use of FC, various filling materials, and welded steel meshes in place of traditional stirrups enhanced the ultimate load by 36.6–107.3%, the ultimate deflection by 6–272%, and the ductility by 89–1155% when referenced to a control NWC beam. When the holing ratio increased from 10 to 20%, the ductility of FC beams was enhanced by 307.7%. Proposed equations were developed to predict the ultimate load and bending moment capacity of FC beams while taking into account the compressive strength of the beam body and filling material, the holing ratio, the tensile reinforcement ratio, and the volume fraction of the steel mesh. Highlights: This study is focusing on structural performance of ferrocement beams with lightweight cores reinforced with steel mesh fabric as a shear reinforcement. Lightweight core concrete with steel mesh fabric reinforcement was made either using lightweight aerated autoclaved brick aggregate (LAABA) or expanded polystyrene (EP). Impact of core lightweight concrete type, shape/number of holes, existing steel mesh fabric, concrete type, existing hollow core, positioning of hole on structural performance of the beams were performed. Structural performance factors such ductility index, failure mechanism, first cracking loads and deflections and ultimate loads and deflections were studied. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index