Detection and size measurements of kidney stones on virtual non-contrast reconstructions derived from dual-layer computed tomography in an ex vivo phantom setup.

Autor: Reimer, R. P., Zaytoun, H., Klein, K., Sonnabend, K., Lennartz, S., Zopfs, D., Heidenreich, A., Maintz, D., Große Hokamp, N.
Předmět:
Zdroj: European Radiology; Apr2023, Vol. 33 Issue 4, p2995-3003, 9p, 1 Color Photograph, 1 Black and White Photograph, 4 Charts, 1 Graph
Abstrakt: Objectives: To systematically investigate the usability of virtual non-contrast reconstructions (VNC) derived from dual-layer CT (DLCT) for detection and size measurements of kidney stones with regards to different degrees of surrounding iodine-induced attenuation and radiation dose. Methods: Ninety-two kidney stones of varying size (3–14 mm) and composition were placed in a phantom filled with different contrast media/water mixtures exhibiting specific iodine-induced attenuation (0–1500 HU). DLCT-scans were acquired using CTDIvol of 2 mGy and 10 mGy. Conventional images (CI) and VNC0H-1500HU were reconstructed. Reference stone size was determined using a digital caliper (Man-M). Visibility and stone size were assessed. Statistical analysis was performed using the McNemar test, Wilcoxon test, and the coefficient of determination. Results: All stones were visible on CI0HU and VNC200HU. Starting at VNC400 HU, the detection rate decreased with increasing HU and was significantly lower as compared to CI0HU on VNC≥ 600HU (100.0 vs. 94.0%, p < 0.05). The overall detection rate was higher using 10 mGy as compared to 2 mGy protocol (87.9 vs. 81.8%; p < 0.001). Stone size was significantly overestimated on all VNC compared to Man-M (7.0 ± 3.5 vs. 6.6 ± 2.8 mm, p < 0.001). Again, the 10 mGy protocol tended to show a better correlation with Man-M as compared to 2 mGy protocol (R2 = 0.39–0.68 vs. R2 = 0.31–0.57). Conclusions: Detection and size measurements of kidney stones surrounded by contrast media on VNC are feasible. The detection rate of kidney stones decreases with increasing iodine-induced attenuation and with decreasing radiation dose as well as stone size, while remaining comparable to CI0HU on VNC ≤ 400 HU. Key Points: • The detection rate of kidney stones on VNC depends on the surrounding iodine-induced attenuation, the used radiation dose, and the stone size. • The detection rate of kidney stones on VNC decreases with greater iodine-induced attenuation and with lower radiation dose, particularly in small stones. • The visibility of kidney stones on VNC≤ 400 HUremains comparable to true-non-contrast scans even when using a low-dose technique. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index