Autor: |
Bouchangour, Mohammed, Jaatit, Ali |
Zdroj: |
Rendiconti del Circolo Matematico di Palermo (Series 2); Mar2023, Vol. 72 Issue 2, p1289-1301, 13p |
Abstrakt: |
Let L (X) be the algebra of all bounded linear operators on an infinite-dimensional Banach space X. Let λ 0 be a fixed complex scalar. Let X T ({ λ 0 }) denote the local spectral subspace of an operator T ∈ L (X) associated with { λ 0 } . The purpose of this paper is to characterize maps ϕ on L (X) that satisfy X ϕ (T) ϕ (S) ({ λ 0 }) = X TS ({ λ 0 }) for all T , S ∈ L (X). We also characterize maps ϕ on L (X) for which the range contains all operators of rank at most four and X ϕ (T) ϕ (S) ϕ (T) ({ λ 0 }) = X TST ({ λ 0 }) for all T , S ∈ L (X). [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|