Autor: |
Lombardo, Davide |
Předmět: |
|
Zdroj: |
Transactions of the American Mathematical Society; Apr2023, Vol. 376 Issue 4, p2615-2640, 26p |
Abstrakt: |
Two abelian varieties A_1, A_2 over a number field K are strongly iso-Kummerian if the torsion fields K(A_1[d]) and K(A_2[d]) coincide for all d \geq 1. For all g \geq 4 we construct geometrically simple, strongly iso-Kummerian g-dimensional abelian varieties over number fields that are not geometrically isogenous. We also discuss related examples and put significant constraints on any further iso-Kummerian pair. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|