Abstrakt: |
Emotions are states of readiness in the mind that result from evaluations of one's own thinking or events. Although almost all of the important events in our lives are marked by emotions, the nature, causes, and effects of emotions are some of the least understood parts of the human experience. Emotion recognition is playing a promising role in the domains of human-computer interaction and artificial intelligence. A human's emotions can be detected using a variety of methods, including facial gestures, blood pressure, body movements, heart rate, and textual data. From an application standpoint, the ability to identify human emotions in text is becoming more and more crucial in computational linguistics. In this work, we present a classification methodology based on deep neural networks. The Bi-directional Gated Recurrent Unit (Bi-GRU) employed here demonstrates its effectiveness on the Multimodal Emotion Lines Dataset (MELD) when compared to Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM). For word encoding, a comparison of three pre-trained word embeddings namely Glove, Word2Vec, and fastText is made. The findings from the MELD corpus support the conclusion that fastText is the best word embedding for the proposed Bi-GRU model. The experiment utilized the "glove.6B.300d" vector space. It consists of two million word representations in 300 dimensions trained on Common Crawl with sub-word information (600 billion tokens). The accuracy scores of GloVe, Word2Vec, and fastText (300 dimensions each) are tabulated and studied in order to highlight the improved results with fastText on the MELD dataset tested. It is observed that the Bidirectional Gated Recurrent Unit (Bi-GRU) with fastText word embedding outperforms GloVe and Word2Vec with an accuracy of 79.7%. [ABSTRACT FROM AUTHOR] |