Loss of Indoleamine-2,3-Dioxygenase-1 (IDO1) in Knockout Mice Does Not Affect the Development of Skin Lesions in the Imiquimod-Induced Mouse Model of Psoriasis.

Autor: Choudhary, Vivek, Ajebo, Etsubdenk, Uaratanawong, Rawipan, Spaulding, Shinjini C., Hossack, Sarah, Xunsheng Chen, Jianrui Xu, Choudhary, Mrunal, Irsik, Debra L., Isales, Carlos M., Bollag, Wendy B.
Předmět:
Zdroj: International Journal of Tryptophan Research; Jan-Dec2022, Vol. 15, p1-9, 9p
Abstrakt: Indoleamine-2,3-dioxygenase (IDO) degrades the essential amino acid tryptophan resulting in tryptophan depletion and the accumulation of catabolites such as kynurenine. The expression/activity of IDO in various cells, including macrophages and dendritic cells, results in an inhibition of T-cell responses in a number of situations, such as toward allogeneic fetuses and tissue grafts. Psoriasis is an immune-mediated skin disease involving T cells; kynureninase and its generation of catabolites downstream of IDO are reported to play an important role in this disease. We hypothesized that mice lacking the IDO1 gene would exhibit a hyperactive immune response and an exacerbation of skin lesions in the imiquimod-induced mouse model of psoriasis. Littermate wild-type and IDO1-knockout mice were treated with imiquimod for 5 days, and the severity of psoriasiform skin lesions assessed using the psoriasis area and severity index (PASI), ear edema measured using a digital caliper, and thickness of the epidermis determined by histology. Expression of pro-inflammatory mediators and tryptophan-metabolizing enzymes was monitored using quantitative RT-PCR. Imiquimod increased ear edema, PASI scores, and epidermal thickness in both WT and IDO1 knockout mice; however, there were no differences observed between the 2 genotypes. There were also no differences in imiquimod's induction of skin inflammatory mediators, indicating no effect of IDO1 gene loss in this psoriasis model. Although these data suggest a lack of involvement of IDO1 in psoriatic skin inflammation, other possible mechanisms, such as compensatory changes in other pathways and the involvement of the IDO2 isoform, must also be considered. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index