Hemodynamic transient and functional connectivity follow structural connectivity and cell type over the brain hierarchy.

Autor: Kai-Hsiang Chuang, Zengmin Li, Huang, Helena H., Gerdekoohi, Shabnam Khorasani, Athwal, Dilsher
Předmět:
Zdroj: Proceedings of the National Academy of Sciences of the United States of America; 1/31/2023, Vol. 120 Issue 5, p1-31, 31p
Abstrakt: The neural circuit of the brain is organized as a hierarchy of functional units with wide-ranging connections that support information flow and functional connectivity. Studies using MRI indicate a moderate coupling between structural and functional connectivity at the system level. However, how do connections of different directions (feedforward and feedback) and regions with different excitatory and inhibitory (E/I) neurons shape the hemodynamic activity and functional connectivity over the hierarchy are unknown. Here, we used functional MRI to detect optogenetic-evoked and resting-state activities over a somatosensory pathway in the mouse brain in relation to axonal projection and E/I distribution. Using a highly sensitive ultrafast imaging, we identified extensive activation in regions up to the third order of axonal projections following optogenetic excitation of the ventral posteriomedial nucleus of the thalamus. The evoked response and functional connectivity correlated with feedforward projections more than feedback projections and weakened with the hierarchy. The hemodynamic response exhibited regional and hierarchical differences, with slower and more variable responses in high-order areas and bipolar response predominantly in the contralateral cortex. Electrophysiological recordings suggest that these reflect differences in neural activity rather than neurovascular coupling. Importantly, the positive and negative parts of the hemodynamic response correlated with E/I neuronal densities, respectively. Furthermore, resting-state functional connectivity was more associated with E/I distribution, whereas stimulus-evoked effective connectivity followed structural wiring. These findings indicate that the structure–function relationship is projection-, celltype- and hierarchy-dependent. Hemodynamic transients could reflect E/I activity and the increased complexity of hierarchical processing. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index