Abstrakt: |
Aiming at the difficulty of designing flexible shielding materials for lightweight and complex structures, the radiation shielding simulation model of coated fabric was established by SuperMC nuclear simulation software system and the γ-ray shielding performance of the material was predicted. Pb and Ta doped Bi/PU coated fabric composites were prepared by coating process. SEM, EDS, γ-ray shielding performance, mechanical properties, and wear resistance were tested. The results show that the simulated values of shielding performance are in good agreement with the measured values, the maximum deviation of the predicted value is 2.94% and the minimum is 0.25%. Doping Pb and Ta can increase the probability of the photoelectric effect and improve the γ-ray shielding performance of the material. When the doping amount of Ta is 5wt%, the shielding rate (simulation value) of Bi/Ta/PU coated fabric composites to 59.5 keV, 122 keV, and 184 keV γ-rays reaches 29.80%, 20.35%, and 8.09%, respectively, which is 3.13%, 2.32%, and 0.95% higher than that without doping. However, Ta is more environmentally safe and can replace Pb as a shielding additive. Doping auxiliary functional particles will improve the shielding performance but will reduce the material's wear resistance and mechanical properties. After doping 5%Ta, the wear resistance index decreased by 6.81, and the tensile strength decreased by 4.5 MPa. The influence mechanism of process parameters on shielding performance is further revealed by visual analysis, which provides a new reference for the design of lead-free flexible shielding materials. [ABSTRACT FROM AUTHOR] |