Mechanical and Tribological Behavior of Aluminum Alloy LM13 Reinforced with Titanium Dioxide Metal Matrix Composites.

Autor: Sreenivasulu, Gantasala, Mohan, C. B., G. B., Veeresh Kumar, Ananthaprasad, M. G.
Předmět:
Zdroj: Iranian Journal of Materials Science & Engineering; Dec2022, Vol. 19 Issue 4, p1-15, 15p
Abstrakt: The physical, mechanical and tribological behavior of Aluminum (Al) alloy LM13 reinforced with Nanosized Titanium Dioxide (TiO2) particulates were investigated in this study. The amount of nano TiO2 particulates in the composite was varied from 0.5 to 2% in 0.5 weight percent (wt.%) increments. The Al-LM13-TiO2 Metal Matrix Composites (MMCs) were prepared through the liquid metallurgical method by following the stir casting process. The different types of Al LM13-TiO2 specimens were prepared for examining the physical, mechanical, and tribological characteristics by conducting ASTM standards tests. Microstructural images, hardness, tensile, and wear test results were used to evaluate the effect of TiO2 addition on Al LM13 samples. Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS), and X-Ray Diffractometer (XRD) were used to examine the microstructure and distribution of particulates in the matrix alloy. In the Al LM13 matrix, microstructure analysis indicated a consistent distribution of reinforced nanoparticles. The attributes of the MMCs, including density, hardness, tensile strength, and wear resistance, were improved by adding up to 1 wt.% TiO2. Fractured surfaces of tensile test specimens were examined by SEM studies. The standard pin-on-disc tribometer device was used to conduct the wear experiments; the tribological characteristics of unreinforced matrix and TiO2 reinforced composites were investigated. The composites’ wear resistance was increased by adding up to 1 wt.% of TiO2. The wear height loss of Al LM13-TiO2 composite increased when the sliding distance and applied load were increased. Overall, the Al LM13 with one wt.% of TiO2 MMCs showed excellent physical, mechanical and tribological characteristics in all the percentages considered in the present study. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index