Abstrakt: |
In the discussion on arthropod phylogeny, the structural evolution of compound eyes and optic ganglia in Crustacea and Insecta is an important topic. On the one hand, many morphological features as well as developmental aspects of the visual system in Insecta and Crustacea correspond in so much detail that eye design in these two groups is likely to have a common euarthropodan ancestor. On the other hand, however, some authors advocate a convergent evolution of the crustacean and insect visual system founding their arguments on differences in the arrangement of the visual neuropils and the fibre connections between Malacostraca and Entomostraca (the "entomostracan enigma"). Therefore, information about cellular aspects of visual system formation in entomostracan Crustacea is likely to enliven this debate, but is not yet available. To fill this gap, we examined the proliferation of neuronal stem cells in the developing visual system of the tadpole shrimp Triops longicaudatus (LeConte, 1846) (Entomostraca, Branchiopoda, Phyllopoda, Calmanostraca, Notostraca) by in vivo incorporation of the proliferation marker bromodeoxyuridine and subsequent immunohistochemical detection. Our results indicate that in the developing visual system of T. longicaudatus, three band-shaped zones containing neuronal stem cells are present corresponding to the proliferation zones found in Malacostraca. We therefore conclude that the ontogenetic mechanisms of visual-system formation are evolutionarily conserved (homologous) in Branchiopoda, Malacostraca, and Insecta. [ABSTRACT FROM AUTHOR] |