Insilico Anticancer Peptide Prediction from Curcuma longa.

Autor: Suryawanshi, Sunil Kumar, Chouhan, Usha, Choudhari, Jyoti Kant
Předmět:
Zdroj: Molecular & Cellular Biomechanics; 2022, Vol. 19 Issue 4, p191-208, 18p
Abstrakt: Cancer is the second biggest cause of death globally, and the use of therapeutic peptides to specifically target and destroy cancer cells has gotten much interest. Cancer peptides or vaccinations are utilized to treat cancer nowadays, apart from chemotherapy, which has significant discomfort, side effects and costly. It is time demanding to identify and predict potential anticancer peptides using computational biology approaches. Thus, 3-D molecular modeling is being used to find possible ACP candidates. In this research, Curcuma longa has predicted peptide sequences were docked on breast cancer receptors and used a molecular docking technique to assess the anticipated peptides’ binding affinities to MHC molecules. A similar approach was utilized to simulate the interactions of the chosen peptide with the TCR. Additionally, the Pep10 LIRQHVASNIGIAKSKIREPIV was examined, and our findings indicated interaction with MHC classes I and II. However, the maximum binding energy was obtained with TCR at 695.61, giving strength through eight hydrogen bonds. Similarly, the Pep20, GAIIGNRKIKLQPHIIIRID, the projected, has the most significant overall binding energy with MHC classes I and II but a lower global E total value with TCR, namely −600.97 kj/Mol, and also four hydrogen bonds. This research could lead to the development of novel anticancer drugs based on the anticancer activity of the Curcuma longa medicinal plant. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index