Abstrakt: |
Number densities of oxygen atoms, nO, in Ar-O2 mixtures with small initial O2 fractions, x O 2 < 1%, flowing through a dielectric-barrier discharge (DBD), are calculated using a plug-flow reactor model, presuming that dissociation and excitation of oxygen species are solely driven by energy-transfer from long-lived excited Ar species, collectively denoted as Ar*. The rate by which Ar* species are generated is calculated from the volume density of power dissipated in the DBD. To obtain extended post-discharge (PD) regions with large nO, experiments were performed with x O 2 = 100 ppm. For such low O2 fractions, the time-dependence of nO in the DBD and the early PD can be calculated by a closed equation. Calculations are compared with optical emission spectroscopic (OES) results, utilizing the proportionality of O-atom emission intensity at 777.4 nm to nO. O-atom densities in the PD are made accessible to OES using a tandem setup with a second DBD as sensing discharge. Model testing by experiment is based on the functional dependence of nO on DBD-residence time and PD-delay time, respectively. Wall losses of O atoms in asymmetrical DBD reactors are calculated by an alternative to Chantry's equation. The agreement between O-atom densities attained at the DBD exit and experimental results is generally good while the speed of rise of nO in the discharge is overestimated, due to the assumption of a constant wall-loss frequency, kW. Compared with literature data, kW is orders of magnitude higher in the DBD and at least one order of magnitude lower in the PD. [ABSTRACT FROM AUTHOR] |