Abstrakt: |
This study was purposed to assess the impact of ageing and resin cements polymerized with different modes on the removal time of lithium disilicate (LiSi) ceramics using Er,Cr:YSGG laser. Ninety LiSi slabs (6 × 6 × 1 mm) were cemented to freshly extracted bovine teeth using cements polymerized with different modes (light-curing (LC), dual-curing (DC), self-curing (SC)). The specimens were divided into subgroups according to ageing conditions (no thermal cycling, 5000 or 30,000 thermal cycling). After that, Er,Cr:YSGG laser was applied until LiSi slabs were debonded; the removal time was recorded. Vickers microhardness test, SEM and EDS analyses were performed for specimens with the longest exposure time to laser application in the groups. One uncemented sample was also used as a control. Data were analyzed with two-way ANOVA and Tukey post hoc test. Ageing and cement polymerization mode significantly affected the removal time of LiSi specimens. The removal time for the self-curing resin cement group (22.67 ± 12.68 s) was significantly longer than for cements polymerized with other methods (LC = 10.833 ± 7.28 s, DC = 12.0 ± 7.96 s). Removal time was significantly reduced after ageing in all polymerization modes; however, there were no significant differences between 5000 (11.83 ± 7.52 s) and 30,000 (11.83 ± 7.26 s) thermal cycling groups. Self-curing resin cements had prolonged the laser-aided removal time for LiSi ceramics. It can be concluded that Er,Cr:YSGG laser-aided removal of LiSi veneers after clinical use can be done more faster than its immediate removal. [ABSTRACT FROM AUTHOR] |