Characteristics of a Fluidic Oscillator with Low Frequency and Low Speed and Its Application to Stall Margin Improvement.

Autor: Liu, Zhuoqi, Pan, Tianyu, Wang, Shiqi, Yan, Zhaoqi
Předmět:
Zdroj: Actuators; Dec2022, Vol. 11 Issue 12, p341, 16p
Abstrakt: Active flow control methods are commonly used in expanding the operating range of compressors. Indeed, unsteady active control methods are the main focus of researchers due to their effectiveness. For constructing an unsteady active control system, reliable actuators are significant. To compare with conventional actuators such as synthetic jet actuators and rotating valves, fluidic oscillators have structurally robust characteristics and can generate self-excited and self-sustained oscillating jets, which leads to its higher applicability in compressors under severe working conditions. Thus, to explore the feasibility of unsteady active control systems by the usage of fluidic oscillators, a low-frequency and low-speed oscillator is first designed and experimentally studied for improving the stability of a low-speed axial flow compressor. During the experiments, a special casing is designed to install 15 uniformly distributed oscillators in the tip region of compressor. Based on the unsteady micro injections of the rotor tip with rotor rotation frequency, the results indicate that the frequency/period of oscillators are flexible, in which the values are decoupled with the variation of inlet pressure. When the inlet-to-outlet pressure ratio of the oscillator is in the range of 1.1~2.0, the maximum velocity ranges from 30 m/s to 80 m/s. Moreover, the mass flow rate of the single oscillator only varies from 0.017‰ to 0.059‰ from the designed compressor mass flow rate. For the improvement of the compressor stall margin, the value is 3.45% when the total mass flow of oscillators is 0.08% of the designed compressor mass flow. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index