Autor: |
Mineo, Giacometta, Scuderi, Mario, Pezzotti Escobar, Gianni, Mirabella, Salvo, Bruno, Elena |
Předmět: |
|
Zdroj: |
Nanomaterials (2079-4991); Dec2022, Vol. 12 Issue 23, p4168, 12p |
Abstrakt: |
Transition metal oxide nanostructures are promising materials for energy storage devices, exploiting electrochemical reactions at nanometer solid–liquid interface. Herein, WO3 nanorods and hierarchical urchin-like nanostructures were obtained by hydrothermal method and calcination processes. The morphology and crystal phase of WO3 nanostructures were investigated by scanning and transmission electron microscopy (SEM and TEM) and X-ray diffraction (XRD), while energy storage performances of WO3 nanostructures-based electrodes were evaluated by cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) tests. Promising values of specific capacitance (632 F/g at 5 mV/s and 466 F/g at 0.5 A/g) are obtained when pure hexagonal crystal phase WO3 hierarchical urchin-like nanostructures are used. A detailed modeling is given of surface and diffusion-controlled mechanisms in the energy storage process. An asymmetric supercapacitor has also been realized by using WO3 urchin-like nanostructures and a graphene paper electrode, revealing the highest energy density (90 W × h/kg) at a power density of 90 W × kg−1 and the highest power density (9000 W/kg) at an energy density of 18 W × h/kg. The presented correlation among physical features and electrochemical performances of WO3 nanostructures provides a solid base for further developing energy storage devices based on transition metal oxides. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|