Autor: |
Su, Pei |
Předmět: |
|
Zdroj: |
Asymptotic Analysis; 2023, Vol. 131 Issue 1, p83-108, 26p |
Abstrakt: |
We consider the asymptotic behaviour of small-amplitude gravity water waves in a rectangular domain where the water depth is much smaller than the horizontal scale. The control acts on one lateral boundary, by imposing the horizontal acceleration of the water along that boundary, as a scalar input function u. The state z of the system consists of two functions: the water level ζ along the top boundary, and its time derivative ∂ ζ ∂ t . We prove that the solution of the water waves system converges to the solution of the one dimensional wave equation with Neumann boundary control, when taking the shallowness limit. Our approach is based on a special change of variables and a scattering semigroup, which provide the possiblity to apply the Trotter–Kato approximation theorem. Moreover, we use a detailed analysis of Fourier series for the dimensionless version of the partial Dirichlet to Neumann and Neumann to Neumann operators. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|