Autor: |
Shchegolkov, Alexander V., Nachtane, Mourad, Stanishevskiy, Yaroslav M., Dodina, Ekaterina P., Rejepov, Dovlet T., Vetcher, Alexandre A. |
Předmět: |
|
Zdroj: |
Journal of Composites Science; Nov2022, Vol. 6 Issue 11, p333, 18p |
Abstrakt: |
Of great importance in materials science is the design of effective functional materials that can be used in various technological fields. Nanomodified materials, which have fundamentally new properties and provide previously unrealized properties, have acquired particular importance. When creating heating elements and materials for deformation measurement, it is necessary to understand the patterns of heat release under conditions of mechanical deformation of the material, as this expands the potential applications of such materials. A study of elastomers modified with multi-walled carbon nanotubes (MWCNTs) has been carried at the MWCNTs concentration of 1–8 wt.%. The modes of heat release of nanomodified elastomers at a voltage of 50 V at different levels of tension are reported. The increment of the MWCNTs concentration to 7 wt.% leads to an increment in the power of heat emissions. It is worth noting the possibility of using the obtained elastomer samples with MNT as sensitive elements of strain sensors, which will allow obtaining information about physical and chemical parameters following the principles of measuring the change in electrical resistance that occurs during stretching and torsion. The changes in conductivity and heat emission under different conditions have been studied in parallel with Raman mapping and infrared thermography. The reported studies allow to make the next step to develop flexible functional materials for the field of electric heating and deformation measurement based on elastic matrices and nanoscale conductive fillers. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|