Application, eco-physiology and biodiversity of anaerobic ammonium-oxidizing bacteria.

Autor: Kartal, Boran, Van Niftrik, Laura, Sliekers, Olav, Schmid, Markus C., Schmidt, Ingo, Van de Pas-Schoonen, Katinka, Cirpus, Irina, Van der Star, Wouter, Van Loosdrecht, Mark, Abma, Wiebe, Kuenen, J. Gijs, Mulder, Jan-Willem, Jetten, Mike S. M., Den Camp, Huub Op, Strous, Marc, Van de Vossenberg, Jack
Předmět:
Zdroj: Reviews in Environmental Science & Biotechnology; Sep2004, Vol. 3 Issue 3, p255-264, 10p, 3 Black and White Photographs, 2 Diagrams, 1 Graph
Abstrakt: The demand for new and sustainable systems for nitrogen removal has increased dramatically in the last decade. It is clear that the conventional systems cannot deal with the increasing nitrogen loads in a cost effective way. As an alternative, the implementation of the anammox (anaerobicammoniumoxidation) process in the treatment of wastewater with high ammonium concentrations has been started. The compact anammox reactors can sustain high nitrogen loads without any problems. The highest observed anammox capacity is 8.9 kg N removed m-3 reactor day-1. The first 75 m3 anammox reactor is operating in Rotterdam, the Netherlands, combined with the partial nitrification process Single reaction system for High Ammonium Removal Over Nitrite (SHARON). Partial nitrification and anammox can also be combined in one reactor systems like Completely Autotrophic Nitrogen removal Over Nitrite (CANON) or Oxygen Limited Ammonium removal via Nitrification Denitrification (OLAND) where aerobic ammonium-oxidizing bacteria (AOB) and anammox bacteria cooperate under oxygen-limitation. These systems remove about 1.5 kg N m-3reactor day-1. In addition to ammonium, urea can also be converted in the CANON system after a two-week adaptation period. The ecophysiological properties of the anammox bacteria make them very well suited to convert ammonium and nitrite. TheKs values for ammonium and nitrite are below 5µM. However, nitrite above 10 mM is detrimental for the anammox process, and oxygen reversibly inhibits the process at concentrations as low as 1µM. Acetate and propionate can be used by the anammox bacteria to convert nitrite and nitrate, whereas methanol and ethanol severely inhibit the anammox reaction. The enzyme hydroxylamine/hydrazine oxidoreductase (HAO), one of the key enzymes, is located in the anammoxosome, which is a membrane bound organelle. The membranes of the anammox bacteria contain unique ladderane lipids and hopanoids. The bacteria responsible for the anammox reaction are related to the Planctomycetes. The first anammox bacteria were isolated via Percoll centrifugation and characterized asCandidatus“Brocadia anammoxidans”. Survey of different wastewater treatment plants using anammox specific 16S rRNA gene primers and anammox specific oligonucleotide probes has revealed the presence of at least three other anammox bacteria, which have been tentatively namedCandidatus“Kuenenia stuttgartiensis”,Candidatus“Scalindua wagneri” andCandidatus“Scalindua brodae”. A close relative of the latter,Candidatus“Scalindua sorokinii” was found to be responsible for about 50% of the nitrogen conversion in the anoxic zone of the Black Sea, making the anammox bacteria an important player in the oceanic nitrogen cycle. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index