Autor: |
Brocca, María Elvira, Mora-Rubio, Arancha, Alonso-Calviño, Elena, Fernández-López, Elena, Díez-Revuelta, Natalia, Martos-Puñal, David, Aguilar, Juan, Higuero, Alonso M., Abad-Rodríguez, José |
Předmět: |
|
Zdroj: |
Cells (2073-4409); Nov2022, Vol. 11 Issue 21, p3485, 21p |
Abstrakt: |
Myelin, critical for the correct function of the nervous system, is organized in different patterns that can include long non-myelinated axonal segments. How myelin patterning is regulated remains unexplained. The carbohydrate-binding protein galectin-4 (Gal-4) influences oligodendrocyte differentiation in vitro and is associated with non-myelinable axon segments (NMS) in cultured neurons. In consequence, Gal-4 has been proposed as a myelin patterning regulator, although no in vivo studies have corroborated this hypothesis. We used Gal-4-deficient mice (Lgals4-KO) to study the role of Gal-4 in cortical myelination in vivo. We show that cultured neurons of Lgals4-KO mice form NMS that are regulated as in control neurons. In addition, oligodendrocyte/myelin markers expression measured by biochemical and immunochemical means, and cortical myelin microstructure studied by in-depth image analysis appear unaltered in these animals. Consistently, myelin displays an essentially normal function assessed by in vivo electrophysiology and locomotion analyses. In conclusion, cortical myelin of Lgals4-KO mice does not show any significant defect in composition, organization or function, pointing to a negligible role of Gal-4 in myelination in vivo or, as discussed, to unknown mechanisms that compensate its absence. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|