Abstrakt: |
From minute-to-minute changes, or across daily, seasonal, or geological timescales, animals are forced to navigate dynamic surroundings. Their abiotic environment is continually changing. These changes could include alterations to the substrates animals locomote on, flow dynamics of the microhabitats they feed in, or even altitudinal shifts over migration routes. The only constancy in any organism's day-to-day existence is the heterogeneity of the habitats they move through and the gradients in the physical media (e.g. air and water) they live in. We explored a broad range of organismal transitions across abiotic gradients and investigated how these organisms modify their form, function, and behavior to accommodate their surrounding media. We asked the following questions: (1) What are some challenges common to animals in changing media or moving between media? (2) What are common solutions to these recurring problems? (3) How often are these common solutions instances of either convergence or parallelism? Our symposium speakers explored these questions through critical analysis of numerous datasets spanning multiple taxa, timescales, and levels of analysis. After discussions with our speakers, we suggest that the role of physical principles (e.g. drag, gravity, buoyancy, and viscosity) in constraining morphology and shaping the realized niche has been underappreciated. We recommend that investigations of these transitions and corresponding adaptations should include comparisons at multiple levels of biological organization and timescale. Relatedly, studies of organisms that undergo habitat and substrate changes over ontogeny would be worthwhile to include in comparisons. Future researchers should ideally complement lab-based morphological and kinematic studies with observational and experimental approaches in the field. Synthesis of the findings of our speakers across multiple study systems, timescales, and transitional habitats suggests that behavioral modification and exaptation of morphology play key roles in modulating novel transitions between substrates. [ABSTRACT FROM AUTHOR] |