Cytoskeletal Transport Protein, Secretagogin, Is Essential for Diurnal Glucagon-like Peptide-1 Secretion in Mice.

Autor: Biancolin, Andrew David, Srikrishnaraj, Arjuna, Jeong, Hyerin, Martchenko, Alexandre, Brubaker, Patricia Lee
Zdroj: Endocrinology; Nov2022, Vol. 163 Issue 11, p1-11, 11p
Abstrakt: The intestinal L-cell incretin, glucagon-like peptide-1 (GLP-1), exhibits a circadian pattern of secretion, thereby entraining diurnal insulin release. Secretagogin (Scgn), an actin-binding regulatory protein, is essential for the temporal peak of GLP-1 secretion in vitro. To interrogate the role of Scgn in diurnal GLP-1 secretion in vivo, peak and trough GLP-1 release were evaluated in knockout mice (Scgn −/−, Gcg-CreERT2/+; Scgnfl/fl and Vil-CreERT2/+; Scgnfl/fl), and RNA sequencing (RNA-Seq) was conducted in Scgn knockdown L-cells. All 3 knockout models demonstrated loss of the diurnal rhythm of GLP-1 secretion in response to oral glucose. Gcg-CreERT2/+; Scgnfl/fl mice also lost the normal pattern in glucagon secretion, while Scgn −/− and Vil-CreERT2/+; Scgnfl/fl animals demonstrated impaired diurnal secretion of the related incretin, glucose-dependent insulinotrophic polypeptide. RNA-Seq of mGLUTag L-cells showed decreased pathways regulating vesicle transport, transport and binding, and protein-protein interaction at synapse, as well as pathways related to proteasome-mediated degradation including chaperone-mediated protein complex assembly following Scgn knockdown. Scgn is therefore essential for diurnal L-cell GLP-1 secretion in vivo, likely mediated through effects on secretory granule dynamics. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index