2022: An Unprecedentedly Rainy Early Summer in Northeast China.

Autor: Lin, Yitong, Fang, Yihe, Wu, Jie, Ke, Zongjian, Zhao, Chunyu, Tan, Kexin
Předmět:
Zdroj: Atmosphere; Oct2022, Vol. 13 Issue 10, pN.PAG-N.PAG, 13p
Abstrakt: In the early summer (June) of 2022, the spatial mean precipitation in northeast China (NEC) was 62% higher than normal and broke the historical record since 1951. Based on the precipitation data of 245 meteorological stations in NEC and the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis, this paper analyzes the role of large-scale circulation and sea-surface temperature (SST) associated with anomalous precipitation over NEC in June using singular value decomposition (SVD), correlation analysis, regression analysis, and composite analysis methods, and further investigates the possible cause of the abnormal precipitation in June 2022. Results show that the northeast China cold vortex (NCCV) accompanying the blocking high in the Okhotsk Sea (BHOS) has been the primary mid-to-high latitude atmospheric circulation pattern affecting NEC precipitation in June since 2001. This circulation pattern is closely related to the tripole SST pattern over the North Atlantic (NAT) in March. In June 2022, the NAT SST anomaly in March stimulates eastward-propagating wave energy, resulting in the downstream anomalous circulation pattern in which the NCCV cooperates with the BHOS in the mid-high latitudes of East Asia. Under this background atmospheric circulation favorable for precipitation, the Kuroshio region SST anomaly in June led to a more northward and stronger anomalous anticyclone in the northwestern Pacific through local air–sea interaction, which provides more sufficient water vapor for NEC, resulting in unprecedented precipitation in June 2022. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index