The iron-sulfur cluster is essential for DNA binding by human DNA polymerase ε.

Autor: Lisova, Alisa E., Baranovskiy, Andrey G., Morstadt, Lucia M., Babayeva, Nigar D., Stepchenkova, Elena I., Tahirov, Tahir H.
Předmět:
Zdroj: Scientific Reports; 10/19/2022, Vol. 12 Issue 1, p1-10, 10p
Abstrakt: DNA polymerase ε (Polε) is a key enzyme for DNA replication in eukaryotes. Recently it was shown that the catalytic domain of yeast Polε (PolεCD) contains a [4Fe-4S] cluster located at the base of the processivity domain (P-domain) and coordinated by four conserved cysteines. In this work, we show that human PolεCD (hPolεCD) expressed in bacterial cells also contains an iron-sulfur cluster. In comparison, recombinant hPolεCD produced in insect cells contains significantly lower level of iron. The iron content of purified hPolECD samples correlates with the level of DNA-binding molecules, which suggests an important role of the iron-sulfur cluster in hPolε interaction with DNA. Indeed, mutation of two conserved cysteines that coordinate the cluster abolished template:primer binding as well as DNA polymerase and proofreading exonuclease activities. We propose that the cluster regulates the conformation of the P-domain, which, like a gatekeeper, controls access to a DNA-binding cleft for a template:primer. The binding studies demonstrated low affinity of hPolεCD to DNA and a strong effect of salt concentration on stability of the hPolεCD/DNA complex. Pre-steady-state kinetic studies have shown a maximal polymerization rate constant of 51.5 s−1 and a relatively low affinity to incoming dNTP with an apparent KD of 105 µM. [ABSTRACT FROM AUTHOR]
Databáze: Complementary Index
Nepřihlášeným uživatelům se plný text nezobrazuje