Autor: |
Şener Uslupehlivan, Ecem, Deveci, Remziye, Şahar, Umut, İzzetoğlu, Savaş |
Zdroj: |
Cell Biochemistry & Biophysics; Dec2022, Vol. 80 Issue 4, p689-698, 10p |
Abstrakt: |
During mitosis, phosphorylation and dephosphorylation of lamins triggers the nuclear envelope disassembly/assembly. However, it hasn't been known whether lamin proteins undergo any modification other than phosphorylation during the cell cycle. Glycosylation of lamin proteins is one of the less studied post-translational modification. Glycosylation and phosphorylation compete for the same positions and interplay between two modifications generate a post-translational code in the cell. Based on this, we hypothesized that glycosylation of lamin A/C protein may be important in the regulation of the structural organization of the nuclear lamina during interphase and mitosis. We analysed the glycan units of lamin A/C protein in lung carcinoma cells synchronized at G2/M and S phases via CapLC-ESI-MS/MS. Besides, the outermost glycan units were determined using lectin blotting and gold-conjugated antibody and lectin staining. TEM studies also allowed us to observe the localization of glycosylated lamin A/C protein. With this study, we determined that lamin A/C protein shows O-glycosylation at G2/M and S phases of the cell cycle. In addition to O-GlcNAcylation and O-GalNAcylation, lamin A/C is found to be contain Gal, Fuc, Man, and Sia sugars at G2/M and S phases for the first time. Having found the glycan units of the lamin A/C protein suggests that glycosylation might have a role in the nuclear organization during the cell cycle. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|