Autor: |
Ntshabele, Koketso, Isong, Bassey, Gasela, Naison, Abu-Mahfouz, Adnan M. |
Předmět: |
|
Zdroj: |
Mathematics (2227-7390); Oct2022, Vol. 10 Issue 19, p3421, 19p |
Abstrakt: |
Low-Power Wide-Area Network (LPWAN) is a wireless WAN technology that connects low-powered and low-bandwidth devices with low bit rates atop Long Ranges (LoRa). It is characterized by improved scalability, wide area coverage, and low power consumption, which are beneficial to resource-constrained devices on the Internet of Things (IoT) for effective communication and security. Security in Long-Range Wide-Area Networks (LoRaWAN) widely employs Advanced Encryption Standard (AES) 128-bit symmetric encryption as the accepted security standard for a key generation that secures communication and entities. However, designing an efficient key manifestation and management model is still a challenge as different designs are based on different research objectives. To date, there is no global and well-accepted LoRaWAN security model for all applications. Thus, there is a need to continually improve the LoRaWAN security model. This paper, therefore, performed an in-depth analysis of some existing LoRaWAN key security models to identify security challenges affecting these security models and assess the strengths and weaknesses of the proposed solutions. The goal is to improve some of the existing LoRaWAN security models by analysing and bringing together several challenges that affect them. Several relevant studies were collected and analysed; the analysis shows that though there are few research works in this area, several existing LoRaWAN security models are not immune to attacks. Symmetry encryption is found to be the most used approach to manage key security due to its less computational operations. Moreover, it is possible to improve existing key security models in LPWAN with consideration of the resource constrained. Again, trusted third parties for key management were also widely used to defend against possible attacks and minimize operational complexities. We, therefore, recommend the design of lightweight and less complex LPWAN security models to sustain the lifespan of LPWAN devices. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|