Autor: |
Zhang, Shan-Shan, Hou, Yu-Fei, Liu, Shao-Jing, Guo, Sen, Ho, Chi-Tang, Bai, Nai-Sheng |
Zdroj: |
Nutrients; Oct2022, Vol. 14 Issue 19, p3980, 21p |
Abstrakt: |
Forty compounds were isolated and characterized from A. tenuissimum flower. Among them, twelve flavonoids showed higher α−glucosidase inhibition activities in vitro than acarbose, especially kaempferol. The molecular docking results showed that the binding of kaempferol to α−glucosidase (GAA) could reduce the hydrolysis of substrates by GAA and reduce the glucose produced by hydrolysis, thus exhibiting α−glucosidase inhibition activities. The in vivo experiment results showed that flavonoids−rich A. tenuissimum flower could decrease blood glucose and reduce lipid accumulation. The protein expression levels of RAC−alpha serine/threonine−protein kinase (AKT1), peroxisome proliferator activated receptor gamma (PPARG), and prostaglandin G/H synthase 2 (PTGS2) in liver tissue were increased. In addition, the Firmicutes/Bacteroidetes (F/B) ratio was increased, the level of gut probiotics Bifidobacterium was increased, and the levels of Enterobacteriaceae and Staphylococcus were decreased. The carbohydrate metabolism, lipid metabolism, and other pathways related to type 2 diabetes mellitus were activated. This study indicating flavonoids−rich A. tenuissimum flower could improve glycolipid metabolic disorders and inflammation in diabetic mice by modulating the protein expression and gut microbiota. [ABSTRACT FROM AUTHOR] |
Databáze: |
Complementary Index |
Externí odkaz: |
|